
Security in multi-tenant
container as
a service platforms

2

Containers are executable packages of software that can easily run on many different
machines. For the most part, they can run independent of the distribution, software,
libraries and processes that are present on the machine they are running on.

To do this, they bundle all the needed executables, libraries and files in one package
and they take advantage of a form of operating system virtualization (on linux:
namespaces and cgroups) to isolate the processes running in the container from the
host machine.

So when we discuss container security and building a multi-tenant container as
a service platform, it is natural to think that escaping that isolation is the thing
to worry about most. In reality there are many other attack vectors. The most
important ones are insecure container configuration, insecure networking and bad
container images.

We will first discuss these before we discuss the actual container escapes.

OVERVIEW

3

Let’s start with insecure container
configurations. Stock container
orchestrators are basically insecure
by default. They allow very loose
configuration of the containers to
support situations where you want to
partly break the isolation: things like
containers in containers or containers
that talk directly to hardware devices
(e.g. GPUs or disks). Providing these
configuration options to users is like
giving them the key to their own jail:
getting out is trivial.

In some container orchestrators you can
(at least partly) disable these insecure
configuration options. As an example,
Kubernetes has had a mechanism to
accomplish just this since release 1.8
(September 2017): Pod Security Policy
(PSP). Using this system a Kubernetes
admin can e.g. disable privileged mode

(a mode wherein a container can
access all devices on the host without
restrictions). Historically, it has proven
quite hard to get these policies right.

First of all, understanding the impact
of the different options can be pretty
complex and it is easy to accidentally
forget to disallow an option that can
lead to security breaches.

Second, PSP could not be extended, so
you could not reject options for which
there were no provisions. Partly because
of this PSP itself never left beta and is
now being deprecated.

There are alternatives: Open Policy
Agent (OPA) + Gatekeeper or Kyverno
are the ones with the most traction, but
they are also quite complex to configure
and difficult to get completely right.

INSECURE CONTAINER CONFIGURATIONS

4

Furthermore, to secure the container
orchestrator you typically end
up prohibiting a large part of the
configuration options and requiring
a fixed set of values for many of the
remaining configuration options (or
even worse, configuration options
get silently replaced by the required
options) which results in a confusing
and frustrating end user experience.

DSH works on top of Marathon which
has no provisions to limit configuration
options out of the box. Instead of
adding a validation/admission step via
a marathon plugin - which would have
created the same problems as listed
above - an alternative approach was
chosen: a proxy is put in front of the

actual container orchestrator and direct
access to the orchestrator is prohibited
for tenants. This proxy allows a tenant
to schedule applications using a custom
container configuration description
format. This format contains only a very
basic but safe subset of all the container
configurations options. We designed it
from scratch, only adding options when
a tenant actually needed them.

This default deny policy allowed us to
create something that was pretty secure
from the start while improving the user
experience. Given the good results we
had with this, it is definitely something
we would consider for other projects
even in the presence of (and on top of)
newer solutions.

5

By default most container runtimes
allow containers to talk to other
containers. In a multi-tenant system
that is not the desired situation: one
tenant should not automatically be
able to access the services of another
tenant. While all these services could
(should?) be secured on their own (tls
+ authentication) it makes sense to
control the network access between
tenants from the container or container
orchestrator level. On DSH (and in
most of our kubernetes clusters) we
use calico for that, but any system that
implements networks policies can be
used. In DSH we configure calico in
such a way that tenants can never talk
directly to other tenants. Basically, we
only allow communication with kafka
and a few platform services.
In DSH we do this to make sure all
useful data ends up on kafka but other

platforms might of course selectively
allow some communication between
tenants.

Container runtimes typically also allow
containers to talk to the outside world.
Unfortunately, that often also means
that containers can talk to services on
the host or in the cloud provider. Most
of these services are well protected
from the outside world but they are not
always secured and hardened against
attacks from within. To prevent attacks
on these services from containers we
can first of all turn off all services that
are not needed. For the services that
cannot be turned off and that are not
sufficiently secured we can again use
network policies to block access from
inside the container. On DSH we block
all access to the hosts & the cloud
provider using calico.

INSECURE NETWORKING

6

Container images are a very easy way
to check out and deploy a new (version
of an) application and if you want to
try something brand new, you’re more
likely to find a container image than a
native package.

But unlike packages in your distro
(which typically get verified by the
company behind the distro) not all
of the available images are harmless.
Malicious actors are always looking to
put bad containers in publicly available
container registries.

To do this they look for popular
applications that do not have a standard
container image and they create their
own container images that bundle these
applications together with malicious
content. If a standard container image
already exists they use techniques
similar to domain name squatting to
trick people into deploying the wrong
container. An attacker can even put a
clean container image in a container
registry and later on (when people
have started using it) replace it with
a malicious image: when a container
restarts it will pull in the bad image.

Once such a bad container image gets
deployed many things can happen: it
can be used to automatically attack the
container orchestrator or the services
running on the machines from the
inside, it can lie dormant but provide a
backdoor that attackers can use later on,

it can open a reverse shell to another
system controlled by an attacker or it
can simply run some extra applications
that steal cpu cycles from the cluster.

Because of the inflation of crypto prices
attacks like these have become more
and more popular. Attackers focus on
mining crypto currencies that are hard
to mine on GPUs or ASICs like monero.
For these, simply stealing cpu cycles
(and memory) can result in considerable
financial gain for an attacker.

In DSH we deliberately disallowed
tenants from pulling in containers from
public container registries: all containers
need to come from registries associated
with and trusted by DSH. These
registries are controlled by the tenants
which at the minimum requires them
to explicitly copy over images before
they get deployed and because of this
attackers cannot simply replace images
in the registry.

Next to that, having dedicated registries
makes it easier to scan images for
known vulnerabilities, known exploits
and even for known crypto-currency
mining tools. Partly because of this
DSH is moving over to Harbor (https://
goharbor.io) as a container registry in
order to improve our container scanning
options.

BAD CONTAINER IMAGES

7

CONTAINER ESCAPES
Usually a container escape is possible
because of vulnerabilities in the kernel
or the container runtime: the container
can still write to some files it shouldn’t
be able to write to, it can still do system
calls it isn’t supposed to be able to do,
... But the vulnerabilities can basically
reside in any service that interacts with
the docker container (as an example:
even a bug in a log collector could
be exploited by crafting the right log
message).

To prevent these attacks we need to
harden the host, the runtime and the
orchestrator and we need to keep
everything up to date. For many of the
systems we use the Center for Internet
Security publishes the CIS benchmarks:
a set of configuration guidelines that
result in a more secure configuration.
For DSH we tried to apply the relevant
benchmarks which is not always an easy
task as some OS security guidelines
might actually conflict with running
containers and services.

LIMIT THE BLAST
RADIUS
Everything we talked about until now
was related to preventing attacks but
no matter how much effort we put
into securing everything, the security
will never be absolute: attackers are
constantly on the lookout for new ways
of escaping containers and exploiting
services and because of this new attacks

are uncovered on a regular basis.
Tenants can be tricked in deploying
these new attacks and container
scanners will typically not pick them up.
So we still need to prepare for container
escapes.

When such an escape happens there are
still some things we can do to limit the
blast radius: when an attacker escapes
the container it would be preferable
if attackers could not access files and
devices on the host machine. One thing
we can do to prevent that is making
sure that when something escapes that
it is running with a user id that is not
used on the host. User namespaces can
be used to map user ids in containers
to (non-existing) user ids on the host.
Preferably we would like a different
mapping per tenant (or even per
application) to also make sure that
no two tenants (or even applications)
use the same user id (otherwise an
escaped application could read files
from another tenant). Unfortunately,
multiple namespaces are not always
easy to implement. Because of this in
DSH we force tenants to use fixed, non-
overlapping sets of user ids.

One other thing we could do is disallow
outgoing traffic by default (whitelist
outgoing traffic). This would prevent an
attacker from setting up a reverse shell
or applications inside the container from
accessing a mining pool. Unfortunately
whitelisting all destinations requires a
lot of management. Because of this we
did not yet implement it in DSH but it is
definitely something to consider for the
future.

8

WRAPPING UP
This text described the most important things to take into account with regards to
security when designing a multi-tenant container as a service platform and how this
applies to DSH. However, there is much more that can be said about the topic. If you
want to learn more, a good book about the subject is “Container Security” by Liz
Rice.

Method of contact: info@klarrio.com

This document is edited by Klarrio.
Due to the rapid development of related technologies in the streaming industry, this document is only for reference
and cannot be used as a basis for investment research or decision-making.
All statements, information, and recommendations in this document do not constitute a warranty of any kind, express
or implied. We may supplement, correct and revise relevant information without notice, but does not guarantee
immediate release of the revised version. All statements, information, and recommendations in this document do not
assume any responsibility for any direct or indirect investment profit and loss.

This document is an intellectual property of Klarrio. No part of this document may be reproduced or transmitted in any
form or by any means without prior written consent. If any content of this report is released by any other party in the
form of reference, Klarrio should be attributed to as the source. Any citation, deletion and modification shall not violate
the original meaning of this report.

For any question or suggestion, please contact: info@klarrio.com

Contact US

BELGIUM
Tel: +32 (0)3 331 99 33
Email: info@klarrio.com

NETHERLANDS
Tel: +31 (0)10 313 25 24
Email: info.nl@klarrio.com

GERMANY
Tel: +49 2407 50 23 180
Email: info.de@klarrio.com

UNITED STATES
Tel: +1 919 649 2997
Email: info.usa@klarrio.com

AUSTRALIA/PACIFIC RIM
Tel: +61 402 850 059
Email: info.aus@klarrio.com

www.klarrio.com







@klarr_io

@Klarrio

linkedin.com/company/klarrio

Copyright © 2021 Klarrio BV - All Rights Reserved.

GENERAL DISCLAIMER
The information in this document may contain predictive statement, including but not limited to, statements regarding
data security, future financial results, operating results, and new technologies. There are a number of factors that could
cause actual results and developments to differ materially from those expressed or implied in the predictive statements.
Therefore, such information is provided for reference purposes only, and constitutes neither an offer nor a commitment.
Klarrio may change the information at any time without notice, and is not responsible for any liabilities arising from your
use of any of the information provided herein.

Klarrio is a one-stop professional services
and cloud-native integrator and prototype
developer for organizations that need
deep expertise in Open Source technology.
We help you define and accelerate your
transformation to new business models,
disruptive technologies and cloud-native
value-added services and vendors.

We do it securely and cost effectively, while
providing you with a team of cloud-native
experts to help transfer our knowledge to
your own, internal IT resources.

